
GitHub Copilot:

Harnessing the power of
AI for quality engineering

Quality engineering & assurance

2 | GitHub Copilot

New era of efficiency with Gen AI

GitHub Copilot in QE lifecycle

The advent of generative AI has created a significant stir in the technology landscape. This transformative shift has
opened doors for innumerable opportunities for the quality engineering (QE) ecosystem and set to revolutionize the
way QE is conducted. Gen AI has introduced a new era of efficiency and effectiveness, harnessing the power of AI
algorithms trained on vast and varied datasets.

While we have been early adopters of code-assist tools such as GitHub Copilot and have skilled our Quality
Engineers for its usage, we have kept pace with the Gen AI technology evolution. Cognizant has invested in
platforms, tools and accelerators that help clients reap the benefits of LLM usage, Agentic AI deployment across the
Quality Engineering lifecycle.

Code-assist tools for testing have become an integral component of the QE process, driven by

advancements in artificial intelligence (AI) and machine learning (ML). One such code-assist tool, Copilot

augments traditional testing methodologies, streamlines processes, improves accuracy and creates

bandwidth for testers to focus on more complex and strategic elements of QE.

Copilot’s intuitive interface facilitates quick adaptation for teams. Its capability to learn from existing

codebases ensures ongoing relevance and effectiveness. Regular updates and enhancements to Copilot

keep it aligned with evolving industry standards, making it a vital tool for modern QE practices.

Cognizant has helped organizations leverage GitHub Copilot in their quality activities. This integration

streamlines the development and testing phases, ensuring a more efficient workflow. Organizations are

experiencing increased productivity and expedited delivery of high-quality software products.

Benefits driven by Copilot

➔ Software quality:Ì
Ä Increased test coverageÊ
Ä Improved automation % Ê
Ä More in sprint automationÊ
Ä Better quality of test code

➔ Time to market:Ì
Ä Reduced onboarding timeÊ
Ä Testing cycle time reductionÊ
Ä Faster release to market

➔ Efficiency:Ì
Ä Increase in ROIÊ
Ä Decreased dependency on specific coding skillsÊ
Ä Better utilization of resourcesÊ
Ä SMEs focus on more strategic activities

Recognized as a Leader in the Gartner Magic
Quadrant for AI code assistants, 2024

Highlighting its superior ability to execute and
completeness of vision: “GitHub Copilot is
recognized as a transformative tool in AI-driven
software development and quality assurance (QA).
With millions of developers and over 77,000
organizations using Copilot, its integration is helping
teams accelerate their development processes by
automating mundane tasks and boosting overall
productivity. It not only enhances the speed of
development but also maintains a high level of code
quality, making it ideal for QA processes where
precision and efficiency are crucial.”

3 | GitHub Copilot

Exploring various use cases for quality engineering

Integrating GitHub Copilot throughout the software development lifecycle allows QE teams to reduce manual effort,
boost speed and precision, and enhance collaboration, which ultimately improves software quality. Cognizant
groups some of the widely implemented use cases under broader categories of generation, augmentation, and
optimization:

➔ Generation

Greenfield test suite generation

➔ Augmentation

Suggestions to improve quality
of existing artifacts

➔ Optimization

Recommendations to improve
user efficiency

Enhanced scripting

Automating repetitive scripting
tasks, allowing teams to focus on
enhancing business coverage.

Test artifact generation

Copilot translates user stories
directly into test artifacts,
accelerating the testing cycle.

Full stack automation

Enables full stack automation with
capabilities to enhance testing
across UI, API, middleware and
backend.

Real-time code suggestions

AI-powered Copilot provides real-
time code suggestions, which can
help you write efficient and error-
free test scripts, improving the
overall quality of your tests.

Code completion and snippet
generation

GitHub Copilot provides code
snippets for QE tasks.

Framework migration

Enhances productivity during test
automation framework migration
from one tech stack to the other.

Code review and fix suggestions

Helps in identifying and
suggesting fixes for bugs in code.

Code optimization & refactoring

Identifies inefficient code patterns
and suggests improvements,
ensuring performance
optimizations without sacrificing
quality.

With its core feature of code generation, the
applicability and wide adoption of AI code assistants
can be observed in several areas�

¥ Test suite generation from requirement document�
¥ Test automation script generation from manual

test case�
¥ Test data generatio¾
¥ Code optimization and revie¢
¥ Automation script maintenancÉ
¥ Frame/script migration

One such variation for its applicability is when clients
are migrating from one automation framework to
another (e.g., Selenium to Playwright).

All existing test suites must be redesigned in the

new framework being adopted. This migration

involves identifying associates who have the

necessary skills, accurate scripting in the new

framework, design, and finally migration to the

test suite.

With a lean team of quality engineers possessing

framework scripting knowledge and assistance

from AI code assistant tools, such framework

migrations have been successfully completed.

Cognizant has helped clients benefit from the

quick turnaround and significantly reduced

effort.

Transforming nature of ‘day in a life scenario’ for QE

As industries move toward
digital transformation,

the adoption of AI-driven tools is
proving indispensable in modernizing
quality engineering practices.

4 | GitHub Copilot

Cognizant quality engineering use cases span across the SDLC

Planning &
requirements

Epic / features
to user story

Requirement to
test cases

Test strategy
generation

Impact
analysis

User story
to BDD

Test data
requirements

User story to
manual TC Design

BDD step
definition

Manual to
automation
script generation

Synthetic test
data
generation

Web & API
test script NFT test script

Generate
commit
messages

CI/CD pipeline
YAML creation

Code
documentations

Generate
release notes Build Debug/fix

Self healing
auto script

Reg. test
optimizer

RCA & failure
analysis Testing

Schema
validation

Production
release Metrics

Test summary
reports

Framework
migration Maintenance

Code
refactoring

Real-time
visibility

1

2

3

4

5

6

Transformation of test automation lifecycle

Designing test automation scripts traditionally involves significant effort for creation of a modular, reusable and
easily maintainable framework such as page-object models, which can be extended to an enterprise-grade test
suites. The use of AI coding assistants has significantly shifted the way test automation scripts are designed and
has reduced the framework creation efforts in generating standardized code snippets and real-time suggestions

for code optimization.

Traditional test automation lifecycle

Gen AI-driven test automation

Define test
scenarios

Step 2

Prompting AI
coding assist tool
with user stories

Step 1

Understand
user story from
business
requirements

Step 1

Create test
cases

Step 3

Automation test
scripts from test
cases

Step 2

Create
page
objects

Step 4

SME to validate
the test cases
and scripts

Step 3

Create
component
classes

Step 5

Create
runner
classes

Step 6

Validate
automation
test scripts

Step 7

5 | GitHub Copilot

Boosting quality engineering

Redeploying quality engineer bandwidth

A typical situation for service providers is the
availability of test suites that are not adequately
mapped back to the right business requirement. This
leads to challenges in identifying a regression test
suite, generation of test data, automation suite
creation, etc. One of the ways GitHub Copilot has
supported quality engineers is to reverse engineer test
suites to generate requirement documents. This use
case was significant when GitHub Copilot was
leveraged to generate BDD feature files from the
automation suite, easing the process of traceability
and test suite maintenance.

Cognizant has also explored the GitHub Copilot
feature for the non-functional testing events of the
software development lifecycle (SDLC). For example,
API script development assisted by GitHub Copilot for
performance testing has shown significant design time
reduction, decreasing the overall non-functional
testing time.

The following are significant use cases in the
performance testing and engineering space offered
for clients:^

U Performance test script development on APIs^
U Migration of performance test scripts^
U Creation of virtualized services^
U Development of automated frameworks for the

performance engineering lifecycle.

With support from code assisting tools, quality
engineers can focus more on brand assurance and
customer experience assurance.

U Refining test strategies^
U Edge case analysi�
U Risk based testing^

U Optimizing automation frameworks^
U Cross-platform testing capabilities^
U Enhance CI/CD integration^

U In-depth performance and security
engineering^

U Customer experience enhancements^

U Improve industry-specific business rules
coverag�

U Regulatory compliance validations^
U Exploratory testing

Strategic user stories with detailed acceptance
criteria

Implement a user story analysis tool to validate
and enhance the quality of user stories, ensuring
they provide essential context for creating precise
BDD scenarios and effective manual test cases

Integration with development tools and processes

Multi Agent architecture for achieving effective
integration with existing development tools and
processes to maintain workflow continuity

Comprehensive manual test cases

Use few-shot prompts to guide the creation of
manual test cases, ensuring clarity in quality
engineering objectives and facilitating accurate
and effective automation scripts

Training and familiarity with Copilot’s capabilities

Conduct regular training sessions and updates to
help the team adopt the tool effectively, boosting
productivity and maximizing potential

1

Robust automation framework

Usage of Modularized, data-driven and easily
maintainable frameworks like Cognizant Reusable
Automation Framework for Testing (CRAFT)

2

5

4

3

Maximizing gains with
GitHub Copilot adoption

Cognizant technology experts have observed that
businesses can maximize the potential of GitHub
Copilot, focusing on few important elements:

Create thoughtful prompts ë
U Specific and clear short prompts^
U Use role-based prompts to break down complex

tasks, providing examples of input and output

Check Copilot’s work/maintain code qualityé
U Review the code suggestions to ensure they meet

the project’s coding standards, security and
performance requirements^

U Copilot’s output is to be treated as starting points
rather than final solutions

Provide contexté
U Open relevant files in the IDE to provide Copilot with

more context^
U Use comments to guide Copilot and improve the

relevance of the suggestions

Stay updatedé
U Follow new features and updates to make the most

of Copilot’s evolving capabilities

© Copyright 2025, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the express
written permission of Cognizant. The information contained herein is subject to change without notice. All other trademarks
mentioned here in are the property of their respective owners.

Conclusion

The future of QE is undoubtedly intertwined with AI. At
Cognizant, we have revolutionized every phase of
Quality Engineering by integrating AI and Gen AI
solutions that have enhanced the quality of releases,
improved time to market and productivity. With our
solutions, frameworks and accelerators that work
seamlessly with LLMs, GenAI based code-assist tools,
SLMs – our clients have seen early success in AI
adoption.

Cognizant has leveraged GitHub Copilot to revamp
quality engineering processes into highly efficient,
automated workflows. The Quality Engineering
community can benefit further with additional features
and capabilities related to generation, augmentation
and optimization in the tool.

As GitHub Copilot continues to evolve, it is positioned
to become a key enabler in skill transformation. It is
empowered to perform activities such as infrastructure
as a code, pipeline as a code, defect fixes; in addition
to automating quality assurance tasks, reducing
human intervention in repetitive testing activities and
improving overall software quality.

“By 2027, 80% of enterprises will have
integrated AI-augmented testing tools into
their software engineering toolchain, which
is a significant increase from approximately
15% in early 2023.”

Gartner

Magic Quadrant for AI Code Assistants

About Cognizant’s quality engineering &
assurance practice

We put AI-driven Quality Engineering at the forefront to
drive technology and mindset change for IT and
business. We achieve first time right quality for
enterprises as they modernize their foundation, build
new business models and reimagine customer
experiences for success in digital and phygital
ecosystems.

 For more details about us click here.

https://www.cognizant.com/us/en/services/enterprise-quality-engineering-assurance

